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ABSTRACT

The purpose of this paper is to demonstrate that, when the number of targets is not known
beforehand, Bayesian optimal filtering approaches to multisensor-multitarget data fusion problems
encounter unexpected conceptual and practical difficulties. The reason is that single-target
Bayesian filtering cannot be naively generalized to multitarget situations and that, consequently,
serious pitfalls await those who simply" declare victory ." In particular , we show that the classical
Bayesian techniques for optimally determining parameters of interest--e.g. , the maximum a
posteriori (MAP) and expected a posterior (EAP) estimators--cannot even be defmed in multitarget
situations. We describe our solution to this problem, "fmite-set statistics" (FISST), as well as
"joint multitarget probabilities (IMP), " a renaming of a special case of FISST. We show how

FISST leads to provably Bayes-optimal multisensor-multitarget data fusion algorithms. We discuss
the optimality and convergence properties of two different Bayesian data fusion algorithms.

1 Introduction

Suppose that a single sensor observes a single moving target and that:

(1)

(2)

(3)

(4)

(5)

(6)

Xa is the state of the target at time-step a;
Za is the measurement of the target collected by a single sensor at time-step a;
2" = (Zl , ...,zJ is the set of accumulated evidence at time-step a;

f(z I x) is the sensor likelihood function;
fa+ll a(Xa+l I x.J is the Markov motion model for the target; and
fa I a(Xa I 2") is the posterior density of the target state at time-step a, given all accumulated data 2"

Then the following well-known Bayesian recursive nonlinear filtering equations are the basis for recursive Bayesian

optimal single-target tracking [1,2,7,9 p. 174,41]:

f4+114(X4+11 Z4)(7a) -=
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1    Introduction 

Suppose that a single sensor observes a single moving target and that: 
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f(Zu+l1 Xu+l) fu+l1 u (Xu I ZA)
f4+11 4+1 (x4+11 Z4+1 )

J !(z«+ll X«..l) ! «+11 « (X« I Z«) dX«..l

Given the posterior. the current target state x" can be approximated using any of the classical Bayes-optimal
estimators, e.g. the maximum a posteriori (MAP) or expected a posteriori (EAP) estimators.

1.1 IINalve" Multitarget Recursive Bayesian Nonlinear Filtering. Ideally, one would like to directly generalize
this standard and well-understood approach to multisensor, multitarget problems. That is, suppose that

(I ')

(2')

(3')

(4')

(5')

(6')

Xa = {Xi;a ,...,Xn(a);J is the set of states of the unknown number n(a) of targets at time-step a;
Za = {Zi;a , ...'~(a);J is the set of observations collected by all sensors at or around time-step a;

zra} : ZI'...'Za is the accumulated evidence at time-step a;
f(Z I X) is the likelihood function for the entire suite of sensors collecting on all targets;
fa+/1 a(Xa+l I XJ is the multitarget Markov motion model for the entire multitarget system; and
fa I a(Xa I Z<a}) is the multitarget posterior density of the multitarget state Xa at time-step a, given all
evidence z(a} accumulated up until that time.

As viewed from a "naive" perspective, it would seem that all that is needed is to write down the following
multitarget versions of the recursive Bayesian nonlinear filtering equations:

fu+llu(Xu+llZ<U»

f(Zu+l1 Xu+l) fu lu(Xu I z(u»)
/«+11 «+I (x«+11 Z«<+l»

Likewise, given the multitarget posterior distribution fa I a(Xa I zta} ) , we would need only apply one of the classical
Bayes-optimal estimators to arrive at an estimate of the current multitarget state Xa .We would then be able to
estimate, in a simultaneous and optimal manner, the number n of targets as well as the individual states Xi of
the targets, without any need to determine an optimal report-to-track association. Stated in different words: Such
a procedure would optimally resolve the conflicting objectives of detection and tracking (as well as identification,
if target I.D. state and measurement variables are present).

Unfortunately, when one tries to apply the standard statistical thinking just described to the multitarget case with
unknown number of targets, one quickly discovers that taking things for granted leads to serious troubles that
directly bear on practice. Specifically, Bayes-optimal multitarget estimation and filtering encounters fundamental
conceptual and practical difficulties when the number of targets is unknown. What is at issue is neither theoretical
hair-splitting nor mere mathematical "bookkeeping." Rather, what is actually at stake is our ability to do Bayes-
optimal multitargetfiltering and estimation at all and, moreover, our ability to even know what "Bayes-optimal"
means in such a context.

This paper is the third in a series devoted to explaining these difficulties; the first two were "Multisource,
multitarget filtering: A unified approach" [29] and "Multitarget Markov Motion Models" [30]. In these papers and
in the book Mathematics ofData Fusion [6], we described a theoretically rigorous, systematic, and unified resolution
of these and other difficulties based on a special case of random set theory [3,8,36] called "finite-set statistics
(FISST) [6,8,21-26,28-35,40]. We also explained why FISST (or something of equal rigor) is necessary to deal

(7a')

(7b')

=

=
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with the associated problems. In the second paper we elaborated on item (5') above: The defmition and
construction of computationally tractable Markov motion models capable of effectively dealing with the dynamicism
of real-world problems. The present paper has two purposes: First, to summarize and explain the major difficulties
by contrasting true multitarget recursive Bayesian nonlinear filtering with three approaches that fail to address these
difficulties. Second, to elaborate on item (6'): extracting the information contained in the multitarget posterior so
that the associated filter will rapidly and stably converge to the correct answer .

1.2 A Short History of Multitarget Recursive Bayesian Nonlinear Filering. The concept ofmultitarget recursive
Bayesian nonlinear filtering is a relatively new one in the data fusion engineering community. The problems
associated with it are greatly alleviated (but not completely eliminated) if we assume that the number of targets,
n, is known. The history of this "known-n" aspect of the problem is summarized in Table I.

TABLE I: Multitarget Recursive Bayesian Nonlinear Filtering: No. of Targets Assumed Known

To our knowledge the earliest work is due to Washbum, who used point process theory to model both multitarget

observations and multitarget states and then constructed a multitarget likelihood function defmed in terms of these

point processes. (Note: Point process theory is closely related to random set theory, see [3].) Kamen and his

associates have attacked the problem by constructing a multitarget measurement model for a Gaussian sensor .
Specifically' the single-target measurement models Z1 = Cxl + W1 ,...,Zn = Cx. + Wn are transformed into a
conventional (but nonlinear) sensor model Z = f(X) + V where X = (xi' ...,x,J and Z is a vector whose

components are symmetric functions of the measurements. In Kastella's approach, a heuristic multitarget average

likelihood f EAMLE(Z I X) is defined for a Gaussian sensor in Poisson clutter and incorporated into a conventional

Extended Kalman Filter (see Section 4 below).

Table II summarizes the history of multitarget Bayesian recursive nonlinear filtering problem when the number n
of targets is not known and must be determined along with the individual target states. As already noted, in the
unknown-n case multitarget recursive Bayesian nonlinear filtering runs afoul of serious conceptual, theoretical, and
practical difficulties [29,30]. Only some of the researchers listed in Table II have addressed (or even been aware
of) these problems. The earliest work appears to be due to Miller, O'Sullivan, Srivistava, et. al. at Washington
University in St. Louis. Their very sophisticated approach requires solution of stochastic diffusion equations on
non-Euclidean manifolds. It is also unique in that it is apparently the only approach to deal with continuous
evolution of the multitarget state. (All other approaches listed in Tables I and II assume discrete state-evolution.)
Mahler was apparently the first to deal with the discrete state-evolution case in complete generality (Bethel and Paras
assume discrete observation and state variables). Kastella's "joint multitarget probabilities" are just a renaming of
a special case of Mahler's approach (see Section 6 below).
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TABLE ll: Multitarget Recursive Bayesian Nonlinear Filtering: No. of Targets Unknown

1.3 Summary of the Paper. The paper is organized as follows. In Section 2 we begin with a brief review of the
basic elements of recursive Bayesian nonlinear filtering and estimation. In Section 3 we show that, when the
number n of targets is unknown, even the most basic of issues--precise defmition of the concept of a multitarget
state--Ieads to trouble. In Section 4 we clarify the key issues underlying a special case--when the number n of
targets is assumed known--by contrasting it with the EAMLE filter. In the sections that follow, we focus exclusively
on the key issues associated with the unknown-n problem. In Section 5 we contrast the filtering aspects of the
unknown-n problem with an ad hoc scheme called "generalized EAMLE." In Section 6 we contrast the estimation
aspects of the unknown-n problem with " JMP"--which, as just noted, is a renaming of a truncated version of FISST .

Section 7 describes the specific problems associated with stable convergence of two such estimators to the true
solution. Conclusions may be found in Section 8.

2. Bayesian Single-Sensor, Single-Target Filtering and Estimation: A Review

Suppose that our goal is to determine the kinematic state x of a single moving target on the basis of point
observations Zl , ...,Za collected by a single sensor. In the discrete-time Bayesian framework we assume the
following information:

.

.

.

.

.

.

Measurement space = precise description of all measurements z that can be collected by the sensor

State space = precise description of all parameters x necessary to uniquely describe all target states

Likelihood function: f(z I X) = likelihood of seeing observation z given that the target has state x

Markov motion model: f,,+J I,,{x"+l I x..) = likelihood of target being in state X,,+l at time-step a+ 1 ,

given that it was in state x" at time-step a
Initial state model: fo(xJ = likelihood that target was initially in state Xo

Posterior density: I" I "{x,, I 2'") = likelihood that the target has state Xa at time-step a, given that

observations Za = (Zl , ...,zJ have been collected

2.1 Recursive Bayesian Nonlinear Filtering Equations. Given this and certain additional independence
assumptions, the discrete-time Bayesian nonlinear filtering equations (7a) and (7b) show how to recursively
propagate the posterior density as each measurement is collected [1,2,7,9,41] .

2.2 State Estimators. The posterior density fll III (xll I zr ) contains all of the information that we need to estimate
the state of the target at time-step a, but this information is unavailable for practical application unless we also have
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a "mathematical can opener"--a state estimator--that enables us to extract it from the posterior. A (static) estimator
of the state x is any family X(Zl ,...,z"J of state-valued functions of the (static) measurements z. '...'Zm .
"Good" Hayes state estimators x should be Bayes-optimal in the sense that, in comparison to all other possible
estimators, they minimize the Hayes risk [43, pp. 54-63]

,znJ) f(z. .Rc(x,m) = ! ., .I j C(x, X(Zl , .Zm I x) f(x) dx dz1 ...dxm

for some specified cost (i.e. , objective or loss) function C(x,y) defined on states x,y. Secondly, they should be
statistically consistent in the sense that x(z. , ...,z.J converges to the actual target state x as the number of
measurements m tends to infinity. Other properties (e.g., asymptotically unbiased, rapidly convergent, stably
convergent, etc.) are desirable as well. In Bayesian theory, the two most common "good" estimators are the
maximum a posteriori (MAP) and expected a posteriori (EAP) estimators:

= argsupxf(x I zJ ,
"z.J, XEAP(Z. , ,z,J = ,,~dxXMAP(ZI , ,z.J I xf(x I z( ,

(where "argsup" means find the value(s) x of x which maximize f(x I Zl ,..,zJ). Though it plays an important
role in theory , the EAP estimator often results in unstable solutions in applications in which the posterior has
multiple significant modes (e.g. low-SNR scenarios in which insufficient data has been collected to ensure the
existence of a single dominant mode).

2.3 Provable Convergence of Estimators. An important point that is often overlooked is that the "goodness" of
an estimator crucially depends on certain seemingly esoteric mathematical concerns. For example, Wald's proof
[44] that the MAP estimator is consistent requires the following assumptions:

.

.

.

The space of all measurements z is a topological space satisfying certain properties;
the space of all states x is a metric space satisfying certain properties; and
f(z I x) is measurable in the variable z (with respect to the measurement-space topology) and continuous
in the variable x (with respect to the state-space metric).

3 What is a Multitarget State?

In the unknown-n problem we encounter basic conceptual difficulties even before getting started. Multitarget

posterior densities f(x I' Xn I Z) cannot even be defmed unless one has at hand a multitarget measurement model

f(y , ..., Zk I X I. ...,x,J that tells us the likelihood of seeing measurements y , Zk given the presence of targets

with states XI , Xn .However, we cannot even define a likelihood function unless we first:

.

.

.

.

precisely define the state and measurement spaces,
define topologies on the state and measurement spaces,
define random variables on the state and measurement spaces using these topologies, and
define the multitarget likelihood function as a conditional distribution of these random variables

But how do we uniquely specify all of the states that the multitarget system can occupy? Multitarget states must
look something like this:

0 : no-target state

XI: the single-target states

XI ,X2 : the two-target states

XI ,...,Xu: the n-target states

However, this naive specification of multitarget states is incomplete The symbol x.x signifies not that a single
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with states xt ,...,xn .  However, we cannot even define a likelihood function unless we first: 

• precisely define the state and measurement spaces, 
• define topologies on the state and measurement spaces, 
• define random variables on the state and measurement spaces using these topologies, and 
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But how do we uniquely specify all of the states that the multitarget system can occupy? Multitarget states must 
look something like this: 

:  no-target state 
x,  : the single-target states 
X; ,x2 :  the two-target states 

X! ,...,xn  :  the «-target states 

However, this naive specification of multitarget states is incomplete   The symbol x,x signifies not that a single 



target with state x is present twice, but rather that two completely different targets happen to occupy the same
kinematic state x. Strictly speaking, therefore, the state of an individual target is not fully specified (in a
multitarget context) unless a unique identifier (an "I.D. tag") has been attached to it, e.g.: (X,T) where x is the
target's kinematic state and T is its unique identifying tag. Thus the incompletely specified two-target state X,X
should be replaced by the completely -specified two-target state (x, T J , (x, T z} .Two-target states of the form (x, T) ,
(y, T) with x ~ y must be excluded as non-physical since the same target cannot occupy two different kinematic
states simultaneously. Also, note that the two-target state (XI ,TJ, (X2'Tz} and the two-target state (X2'Tz}, (XI
,TJ are not distinct: They represent the same two-target state. What results is a rather complicated state space
which is partially discrete and partially continuous.

Finite-set statistics (FISST) resolves these technical problems by representing multitarget states geometrically--that
is, as finite sets whose elements are the states of the individual targets, endowing multitarget states and multitarget
observations with suitable topologies/metrics, and then showing that the resulting multitarget state space is
sufficiently well-behaved to ensure good filtering behavior [6, pp. 194-198].

4. Heuristic versus True Multitarget Likelihood Functions

When the number of targets is known, it would appear that the problems summarized in Section 3 can be
sidestepped because, in this case, multitarget states can be modeled as ordinary vectors. This belief is mistaken.
Given that we have multitarget likelihood function !(ZI ,...,Zk I XI ,...,x,J, how can we systematically construct it
from a knowledge of the individual sensors--rather than assuming that it is either a heuristic contrivance or a
mathematical abstraction that comes out of nowhere, deus ex machina? These key issues underlying known-n
multitarget filtering are best illustrated by examinining the event-averaged maximum likelihood (EAMLE) filter
described by Kastella in 1993. [14]

4.1 The EAMLE Filter. Suppose that a known number n of unknown targets is observed in Poisson-distributed
clutter by a Gaussian tracking radar .If xi, ...,Xn are the states of the targets, concatenate them into a single
"system-level" state vector X = (Xi ,...,x.J. Likewise, if Zi ,...,Zm are the observations collected by the sensor,
then concatenate them into a single "system-level" observation vector Z = (Zi ,...,ZnJ. Kastella contructs a

heuristic multitarget "average likelihood" function

fEAMLE(Z I X,n) = ECJf(Z I X,n,q) p(n,q)

where the summation is over all possible associations u between states XI ,...,Xn and measurements Zl ,...,Zm
and where fa I X,n,u) is the likelihood given a particular association u. Assume that the between-measurements
evolution of the "system" state vector X can be modeled by a conventional Kalman equation X..+I = A~k + Vk

.If fo(X I n) denotes prior knowledge of the system state vector X, then--assuming that fEAMLEa I X,n) is a true
multitarget likelihood function--argsupxfa I X, n) fo(X I n) provides an optimal estimate of the system-Ievel state
X. Using these measurement and motion models, the multitarget system vector X can be tracked by an EKF.

This discussion implies that known-n filtering can be accomplished entirely within a "naive" vector-based paradigm

based on standard filtering theory .In reality, such a perspective overlooks a key point:

. Is fEAMLE(Z I X,n) a true multitarget likelihood function or is it an ad hoc, purely heuristic contrivance?

4.2 True Likelihood Functions: Single- Target Case. For purposes of illustration, consider a simpler problem:
single-target filtering. Here, the likelihood function f{z I x) does not appear out of nowhere. We are able to
systematically construct it from an explicit sensor model z = h{x,w) that describes the way a target with state

x generates sensor measurements z under the influence of random noise w described by a probability density
fw{Y). For example, let C be a matrix and suppose that the sensor model is z = Cx + w. Then
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target with state x is present twice, but rather that two completely different targets happen to occupy the same 
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,T,) are not distinct: They represent the same two-target state. What results is a rather complicated state space 
which is partially discrete and partially continuous. 

Finite-set statistics (FISST) resolves these technical problems by representing multitarget states geometrically--that 
is, as finite sets whose elements are the states of the individual targets, endowing multitarget states and multitarget 
observations with suitable topologies/metrics, and then showing that the resulting multitarget state space is 
sufficiently well-behaved to ensure good filtering behavior [6, pp. 194-198]. 

4.  Heuristic versus True Multitarget Likelihood Functions 
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from a knowledge of the individual sensors-rather than assuming that it is either a heuristic contrivance or a 
mathematical abstraction that comes out of nowhere, deus ex machinal These key issues underlying known-« 
multitarget filtering are best illustrated by examinining the event-averaged maximum likelihood (EAMLE) filter 
described by Kastella in 1993. [14] 

4.1 The EAMLE Filter. Suppose that a known number n of unknown targets is observed in Poisson-distributed 
clutter by a Gaussian tracking radar.   If x, ,...,x„  are the states of the targets, concatenate them into a single 
"system-level" state vector X = (x{ xj. Likewise, if z, .....z,,, are the observations collected by the sensor, 
then concatenate them into a single "system-level" observation vector Z = fo ,...,zj. Kastella contructs a 
heuristic multitarget "average likelihood" function 

SEAMLE(L I X,«;   =   Y.J(L\X,n,a)p(n,a) 

where the summation is over all possible associations  a between states x, ,...,xn and measurements  z{  zm 

and where f(L \ X,n,o) is the likelihood given a particular association a. Assume that the between-measurements 
evolution of the "system" state vector X can be modeled by a conventional Kaiman equation Xk+, = A^ + Vk 

. If /0(X | n) denotes prior knowledge of the system state vector X, then-assuming that ^««^(Z | X,n) is a true 
multitarget likelihood function--argsupx/(Z | X,n)f0(X \ n) provides an optimal estimate of the system-level state 
X.  Using these measurement and motion models, the multitarget system vector X can be tracked by an EKF. 

This discussion implies that known-« filtering can be accomplished entirely within a "naive" vector-based paradigm 
based on standard filtering theory.  In reality, such a perspective overlooks a key point: 

• Is /EAMLECZ I X,/0 a true multitarget likelihood function or is it an ad hoc, purely heuristic contrivance? 

4.2 True Likelihood Functions: Single-Target Case. For purposes of illustration, consider a simpler problem: 
single-target filtering. Here, the likelihood function /(z \ x) does not appear out of nowhere. We are able to 
systematically construct it from an explicit sensor model z = h(x,\r) that describes the way a target with state 
x generates sensor measurements z under the influence of random noise w described by a probability density 
fw(y). For example, let C be a matrix and suppose that the sensor model is z = Cx + w.  Then 



s sfz(Y I x) dy = Pr(z E S) = Pr(Cx+w E S) = Pr(w E S-Cx) = J s-Cxfw(Y) dy =
J sfw(Y-Cx) dy

where s-Cx denotes the set of all s -Cx with s E S. Since this is true for all measurable S, the likelihood
function is t.(Y I x) = fw(Y-Cx) almost everywhere in Y. In other words: We know that !.(Y I x) is the true

likelihood function for the problem (and not just a heuristic contrivance) because it can be systematically and
rigorously constructed from the actual sensor model using standard probabilistic reasoning. (In purely mathematical
language: The likelihood function fz(Y I x) can be explicitly constructed as the Radon-NikodYm derivative fz =
dpz/dA, with respect to Lebesgue measure A, of probability measure Pz(S) = Pr(z E S).) In like fashion we ask:

.

.

How do we construct multitarget sensor models of the general form Z = h(X, W) where Z is a

multitarget measurement, X is a multitarget state, and W is a random clutter process?
How do we rigorously, systematically construct multitarget likelihood functions f(Z I X) from the model
Z = h (X, W) using standard probabilistic procedures?

4.3 FISST Multitarget Likelihood Functions. Addressing these questions is one of the advances made possible
by FISST. The basic idea is this: We construct an explicit multitarget measurement model of the form

Z=TUW

where the randomly varying finite set T = T(X) models the observations generated by the actual targets and where

the randomly varying [mite set W models the false alarm and/or clutter observations. Assume that spurious
observations are independent of actual observations. Then

I sfz(Y I X) oY = Pr(Z £ S) = Pr(FUW £ S) = .f s EE !; yfT(Y-E I X) fw(E) oY

where the integrals are multi-object "set integrals" (see [6, pp. 141-144; 34, p. 334] and equation (15) below).
Since this is true for all measurable S, we get

fz{Y I X) = ~E ~ yfT{Y-E I X) fw(E)

where frlY I X) can be explicitly constructed from the underlying sensor measurement model z = h(x,w), and
where fw(E) can be explicitly constructed from an underlying clutter measurement model z = g(x, v). Indeed, as

early as November 1993, Mahler showed how to use the "set derivative," [6, pp. 150-152,20,22,27,34] to
systematically and rigorously construct multitarget likelihood functions fz(Z I X), fr(Z I X), fw(Z) from underlying
sensor models even when the number of targets is unknown. Consequently, just as the equation Pr(z E S) = I s

f(y I x) dy is the fundamental relationship that allows us to conceptually link single-target sensor measurement
models with likelihood functions, so the FISST equation Pr(Z S; S) = I s flY I X) oY is the fundamental

relationship that allows us to conceptually link multitarget sensor measurement models with "global" (i.e., true
multitarget) likelihood functions. In particular: In April 1994 we demonstrated [6, pp. 228-235; 20] that, when
FISST is restricted to the special situation addressed by EAMLE then

(8) f F/S.IT(Zl ,
,x.J = m! fEAMLE(Zl , .,Xn ,n),Zm I XI' .,Zm I XI'

That is: Using FISST, one can prove that the heuristic multitarget likelihood fEAMLE(L I X,n) actually is the true
multitarget likelihood function for this particular multitarget problem.

5. Statistically Coupled versus Statistically Decoupled Multitarget Probability Distributions

We now turn exclusively to applications in which the number n of targets is not known. Some of the key issues
involved in the unknown-n problem are best illustrated by describing "generalized EAMLE", a multitarget filtering
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where fT(Y \ X) can be explicitly constructed from the underlying sensor measurement model z = h(x,v/), and 
where fw(E) can be explicitly constructed from an underlying clutter measurement model z = g(x,v). Indeed, as 
early as November 1993, Mahler showed how to use the "set derivative," [6, pp. 150-152,20,22,27,34] to 
systematically and rigorously construct multitarget likelihood functions fz(Z \ X), fT(Z \ X), fw(Z) from underlying 
sensor models even when the number of targets is unknown. Consequently, just as the equation Pr(z E S) = J s 

f(y | x) dy is the fundamental relationship that allows us to conceptually link single-target sensor measurement 
models with likelihood functions, so the FISST equation Pr(Z Q S) = J s f(Y \ X) 8Y is the fundamental 
relationship that allows us to conceptually link multitarget sensor measurement models with "global" (i.e., true 
multitarget) likelihood functions. In particular: In April 1994 we demonstrated [6, pp. 228-235; 20] that, when 
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That is: Using FISST, one can prove that the heuristic multitarget likelihood fsmi£(^ I X,«J actually is the true 
multitarget likelihood function for this particular multitarget problem. 

5.  Statistically Coupled versus Statistically Decoupled Multitarget Probability Distributions 

We now turn exclusively to applications in which the number n of targets is not known. Some of the key issues 
involved in the unknown-/» problem are best illustrated by describing "generalized EAMLE", a multitarget filtering 



scheme devised at Lockheed Martin by Kastella in May 1993 [17] that fails to exhibit any grasp of these issues,

5.1 "Generalized EAMLE" Filter. Generalized EAMLE consists of the following ad hoc sequence of Bayesian
and non-Bayesian steps:

Step 1: Let fo(X I n) be the prior over all system state vectors X with n targets, i.e. .t fo(X I n) dX = 1

Step 2: Let f(Z I X,n) be the EAMLE average-likelihood function (X is a system state vector with n targets)
Step 3: Construct a mean-likelihood function f(Z I n) = S f(Z I X,n)fo(x I n) dX for each n = 1,2,...
Step 4: Determine the most likely value of n via an ML estimator: i.e. n = argmaxllf(Z I n)

Step 5: Given n, use a MAP estimator to find the value of the multitarget state X, i.e.,

argsup f(Z I x, Il) fo(X Ill)
x:":,,

=x I"~n

(Since the only description of this approach is an unpublished technical document, we reproduce the relevant text
as an Appendix. ) Generalized EAMLE is "horizontal " in structure: The unknown-n multitarget estimation problem

is dissected into parallel, statistically decoupled known-n problems for n = 1,2,..~, with each known-n problem

being processed using one cycle of an EAMLE filter (see Figure 1). Multitarget state space is partitioned into
separate state spaces, one for each target number n = 1,2,... (the zero-target case is overlooked entirely). The
likelihood functions fa I X,n) for n = 1,2,... presume that the number of targets is fiXed. Prior knowledge is
specified by separate prior probability densities fo(X I n) for n = 1,2,... Target number is determined not by
directly comparing all multitarget states X = (XI ,...,x.J with all multitarget states y = (YI ,...,Yn') for arbitrary

target number n, n' but, rather, by computing mean-Iikelihoods fa I n) separately for each known-n problem
and then in effect comparing an "typical n-target state" to a "typical n'-target state". This statistical decoupling
of the unknown-n problem has the following consequences:

.

.

.

Because the priors fo(X I n) are decoupled, they contain no prior knowledge lo(n) regarding the number
of targets
Because the parallel known-n filters are decoupled, probability mass cannot shift from one row of Figure
1 to another .
Because state estimation is decoupled, multitarget states with differing target number cannot be directly
compared with each other to more effectively determine which are most or least likely.

5.2 Key Points or Multitarget Recursive Bayesian Filtering. The source of these difficulties is the fact that
generalized EAMLE exhibits no conceptual grasp of the following key points, especially item (11):

(9)

(10)

(11)

(12)
(13)

Reconceptualize a group of unknown targets, of unknown number, as a single joint multitarget system
Reconceptualize target number and individual target states as just specific parameters of a single joint
multitarget state
Reconceptualize priors, posteriors, and likelihoods as single densities involving an unknown number of
targets and target states
Reconceptualize detection and estimation as different aspects of a single, simultaneous statistical process
Recognize that one cannot just "declare victory": reconceptualization is the easy part, because it leads to
unexpected theoretical and practical difficulties that cannot be swept under the rug

5.3 FISST Statistically Coupled Filtering. These key points are the conceptual foundation of true (i.e., non-
naive) multitarget Bayesian recursive nonlinear filtering--and the FISST approach to it in particular .This approach
is vertical in structure: It correctly models the statistical coupling between all multitarget states and--in particular--
regards multitarget priors and posteriors as single probability distributions (see Figure 2). For example, the FISST
"global maximum likelihood estimator (global MLE)" [20,22,27,34] was introduced in Nov. 1994. The global

scheme devised at Lockheed Martin by Kastella in May 1993 [17] that fails to exhibit any grasp of these issues. 
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Figure I: "Generalized EAMLE" The conceptual key points underlying
multitarget Bayesian nonlinear filtering--unified multitarget state spares, joint
multitarget probability distributions, and simultaneous estimation of multitarget
states--are illustrated via comparison with " generalized EAMLE, " an ad hoc

approach that fails to grasp these points. Generalized EAMLE has a
"horizontal" structure (above): The multitarget filtering problem is broken up
into parallel, completely decoupled filters. Each filter deals with a different
hypothesis about the number n = 1, ...,k of targets (the zero-target hypothesis

is neglected). Because the priors fo(X I n) are decoupled, they provide no
means of specifying initial belief fo(n) regarding the number of targets.
Because the parallel filters are decoupled, probability mass cannot shift from one
row to another. Because state estimation is decoupled (i.e. , target number is
determined by computing a marginal likelihood fa I n) for each row),
multitarget states with differing target number cannot be directly compared with
each other to determine which are most or least likely.

Figure 2: Multitarget Bayesian nonlinear filtering, by way of contrast, has
a "vertical" structure (above) that correctly models the coupling between (i.e.,
relative probability contributions of) all multitarget states. It does so via
multitarget densities that are "global" ("joint") in that they are single densities
involving an unknown number of targets and target locations, defmed over a
unified multitarget state space. The multitarget prior fo(X) is a "global"
collection lfo(X I i)fo(i)}i=o.l k of conventional densities coupled together by
a joint normality condition I fo(X) lJX = 1 (where' I' denotes a multitarget

or "set" integral). The multitarget posterior fo(X I Z) is a "joint multitarget
probability" lfo(X I Z,i) f(i I Z)};=O.I, k of the same type. The joint
multitarget likelihood function f(Z I X) is a joint collection If(Z I X,i)}i=O.I ,ko

Figure 1: "Generalized EAMLE" The conceptual key points underlying 
multitarget Bayesian nonlinear filtering—unified multitarget state spaces, joint 
multitarget probability distributions, and simultaneous estimation of multitarget 
states-are illustrated via comparison with "generalized EAMLE," an ad hoc 
approach that fails to grasp these points. Generalized EAMLE has a 
"horizontal" structure (above): The multitarget filtering problem is broken up 
into parallel, completely decoupled filters. Each filter deals with a different 
hypothesis about the number n = l,...,k of targets (the zero-target hypothesis 
is neglected). Because the priors f0(X \ n) are decoupled, they provide no 
means of specifying initial belief f0(n) regarding the number of targets. 
Because the parallel filters are decoupled, probability mass cannot shift from one 
row to another. Because state estimation is decoupled (i.e., target number is 
determined by computing a marginal likelihood f(L \ n) for each row), 
multitarget states with differing target number cannot be directly compared with 
each other to determine which are most or least likely. 

Figure 2: Multitarget Bayesian nonlinear filtering, by way of contrast, has 
a "vertical" structure (above) that correctly models the coupling between (i.e., 
relative probability contributions of) all multitarget states. It does so via 
multitarget densities that are "global" ("joint") in that they are single densities 
involving an unknown number of targets and target locations, defined over a 
unified multitarget state space.   The multitarget prior  f0(X)   is a "global" 
collection  \f0(X. | i)f0(i)}i=0,i *  °f conventional densities coupled together by 
a joint normality condition j f0(K) bX - 1 (where ' J ' denotes a multitarget 
or "set" integral).  The multitarget posterior f0(X \ Z)   is a "joint multitarget 
probability"    {/Ö(X | Z,i) f(i | ZJ}i=(U k    of the same type.      The joint 
multitarget likelihood function f(Z \ X) is a joint collection {f(Z \ X,i)}i=01   k. 



MLE integrated the functions of detection and localization into a single, simultaneous, and provably optimal
statistical operation. Suppose the sensor collects observation-sets Z<m) : Zl ,...,Zm. Then the global likelihood
function is L(X I Z<m) ) = fI:(Zl I X) ...fI:(Zm I X)--i.e. , a single density involving an unknown number of targets

and target states. The global MLE is [22]:

argsup L(X I z(m) )

x
z<m»){~ ,..., iii} argsup L({~ ,..., x.

n .xi x.

where "argsupx" denotes that unique value of X which (if it exists) maximizes L(X I ztmJ). It is provably optimal
because f(Z I X) is a true multitarget likelihood function (since it can be computed directly from sensor
characteristics using the "set derivative" [6,22,34]). In early 1994, three Lockheed Martin internal technical reports
described the global MLE process using simple numerical examples. [6, pp. 256-259; 27] In Apri11994, EAMLE
was proved to be a special case of the global MLE. [20] Also in November 1993, Mahler introduced the concept
of a "global " probability density , i.e. one which takes account of the fact that both numbers of targets and numbers

of observations are generally random. Using both set notation and more conventional notation, it was shown that
such densities could be equivalently written in the form

(14) f({xl, ,xn}) = n! f(x1 ,...,X.J

and that, in either notation, they were defined by the joint normality condition [20 p. 9]

(15) 1= =

that was subsequently expressed in abbreviated form as a so-called "set integral " J f{X I z(m)) oX = 1

6. Optimal versus Heuristic Multitarget Estimators

Thus far we have underscored difficulties associated with the filtering aspects of equations (7a' , 7b'). Even if we
have managed to construct the multitarget posterior, however, our work is still not done. We must also find a
means of extracting from it the information that we want: estimates of the multitarget state variables (target
number, identities, positions, velocities, etc.). Here, we encounter even greater difficulties. Some of the key points
involved in unknown-n multitarget state estimation are best illustrated by contrasting them to "joint multitarget
probabilities (IMP)", a renaming of FISST core concepts that fails to address these key points.

6.1 "Joint Multitarget Probabilities (JMP)". Describing it as "similar in some respects to the random set
formalism of Mahler" [13 p. 168], Kastella introduced " JMP" [13,16] at Lockheed Martin in July 1996 as a solution

to the unknown-n problem. However, only a trivial change of notation differentiates" JMP" from a number of core
FISST concepts devised years earlier. [24 Sect's 2-3,29,30,40 pp. 27-28] The relevant chronology is listed in Table
III below. From late 1993 on, research on FISST was widely reported in the form of simple numerical examples
and other internal Lockheed Martin research reports; internal and external presentations; and published conference
papers. When it appeared in July 1996, " JMP" (as a solution to both unknown-n multitarget filtering and multitarget

information theory) reiterated FISST "key points" developed during this period (indeed, even some of the same
notation--see equ. (14) above). These include:

.

.

.

.

the concept of "a single density involving an unknown number of targets and target locations"

multitarget posteriors
set integrals
multitarget Kullback-Leibler measures

=

MLE integrated the functions of detection and localization into a single, simultaneous, and provably optimal 
statistical operation. Suppose the sensor collects observation-sets Zfm> : Zl ,...,Zm. Then the global likelihood 
function is L(X j ZF°) = fz(Z, \ X) • • • fE(Zm \ X)-i.e., a single density involving an unknown number of targets 
and target states.  The global MLE is [22]: 

{xj,...,^}            argsup UX | Z(m))            argsup Z^,..., x.    Z(m)) 
* "'xi *. 

where "argsupx" denotes that unique value of X which (if it exists) maximizes L(X \ Z?m>). It is provably optimal 
because f(Z \ X) is a true multitarget likelihood function (since it can be computed directly from sensor 
characteristics using the "set derivative" [6,22,34]). In early 1994, three Lockheed Martin internal technical reports 
described the global MLE process using simple numerical examples. [6, pp. 256-259; 27] In April 1994, EAMLE 
was proved to be a special case of the global MLE. [20] Also in November 1993, Mahler introduced the concept 
of a "global" probability density, i.e. one which takes account of the fact that both numbers of targets and numbers 
of observations are generally random. Using both set notation and more conventional notation, it was shown that 
such densities could be equivalently written in the form 

(14) /({x, ,.   ,x„})   =  n!f(x, ,...,xj 

and that, in either notation, they were defined by the joint normality condition [20 p. 9] 

(15) =     1     = 

that was subsequently expressed in abbreviated form as a so-called "set integral"     J f(X \ Z(m>) 5X = 1 

6.  Optimal versus Heuristic Multitarget Estimators 

Thus far we have underscored difficulties associated with the filtering aspects of equations (7a', 7b'). Even if we 
have managed to construct the multitarget posterior, however, our work is still not done. We must also find a 
means of extracting from it the information that we want: estimates of the multitarget state variables (target 
number, identities, positions, velocities, etc.). Here, we encounter even greater difficulties. Some of the key points 
involved in unknown-n multitarget state estimation are best illustrated by contrasting them to "joint multitarget 
probabilities (JMP)", a renaming of FISST core concepts that fails to address these key points. 

6.1 "Joint Multitarget Probabilities (JMP)". Describing it as "similar in some respects to the random set 
formalism of Mahler" [13 p. 168], Kastella introduced "JMP" [13,16] at Lockheed Martin in July 1996 as a solution 
to the unknown-« problem. However, only a trivial change of notation differentiates "JMP" from a number of core 
FISST concepts devised years earlier. [24 Sect's 2-3,29,30,40 pp. 27-28] The relevant chronology is listed in Table 
III below. From late 1993 on, research on FISST was widely reported in the form of simple numerical examples 
and other internal Lockheed Martin research reports; internal and external presentations; and published conference 
papers. When it appeared in July 1996, "JMP" (as a solution to both unknown-n multitarget filtering and multitarget 
information theory) reiterated FISST "key points" developed during this period (indeed, even some of the same 
notation—see equ. (14) above).  These include: 

• the concept of "a single density involving an unknown number of targets and target locations" 
• multitarget posteriors 
• set integrals 
• multitarget Kullback-Leibler measures 



. the "almost-parallel worlds principle (APWOP)," a systematic approach to generalizing single-sensor,
single-target concepts and approaches to multisensor-multitarget problems

In particular, Kastella used the APWOP to directly generalize his single-target "discrimination gain" approach to
the multitarget case. [13, p. 168,24,40 pp. 27-28]

Date

05/93

11/93

03/94

04/94

04/94

Finite-Set Statistics
TABLE ill: A FISST Chronology

"Joint Multitarget Probabilities"
Generalized EAMLE [17] ~ ---,

Global MLE [20,22]
Numerical examples [27]
EAMLE = special case of global MLE [20]

Joint multi-object densities [20] 21h.

yrs
10/94 Multitarget posteriors, multitarget

Kullback-Leibler metrics, APWOP [34]
11/95

03/96

07/96

Unknown-n unsolved [15] -(; 1

Multitarget nonlinear filtering [23]
II IMP" [13]

Given this chronology and our discussion in Section 4, any claim that "IMP" is just an obvious embellishment of
"generalized EAMLE" (and therefore that "IMP" actually pre-dates FISST) would simply not be credible. On the
one hand, in Section 4 we demonstrated that generalized EAMLE is an ad hoc procedure that exhibits no
understanding of any of the conceptual "key points" (9)-(13) of multitarget Bayesian recursive nonlinear filtering
(and of "IMP" in particular). On the other hand, as late as November 1995, Kastella reported being still in search
of a satisfactory solution of the unknown-n problem--despite the prior existence of" generalized EAMLE" .(To wit:
"Some basic questions for future research are...How to extend the results to the case of an unknown number of
targets. .." [15 p. 43]). It would be no more credible to claim that "IMP" is "simpler" than FISST. A trivial
change of notation constitutes neither a simplification nor a technical advance. Neither does inattentiveness to
unexpected research difficulties--for example, recognition that optimal estimation in multitarget Bayesian filtering
cannot be taken for granted; or recognition of the closely related fact that continuous variables create fundamental
practical difficulties in multitarget Bayesian filtering. [6 pp. 190-194,23,29]

Specifically, in" JMP" state space is completely discretized, with the following assertion that the continuous-state

case follows immediately from a trivial change of notation:

. "For simplicity, the target space is discretized into a collection of cells (in the continuous case, the cell
probabilities can be replaced by densities in the usual way)." [16 pp. 123]

(In actuality, passage from the discrete-variable to the continuous-variable case introduces fundamental
complications. [6 pp. 190-194;18]) Given this, a JMP has the form [13 p. 167,16 p. 122]

(16) P(Cl ,..., c" I Z)
n

PCt C.(Xl ,...,Xn I Z)or

where z is a set of observations, n is the (unknown) number of targets, xi, ...,x" are discrete location cells, and
c i' ..., c" are the respective I. D .classes of the targets in these cells. This is essentially the alternative notation for
a global posterior density described in equations (8) and (14). In JMP, the family of probability distributions p"
indexed by n are treated as a single joint probabilistic entity by requiring [13 p. 168,16 p. 123] that they satisfy
the following normalization criterion:
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cannot be taken for granted; or recognition of the closely related fact that continuous variables create fundamental 
practical difficulties in multitarget Bayesian filtering. [6 pp. 190-194,23,29] 

Specifically, in "JMP" state space is completely discretized, with the following assertion that the continuous-state 
case follows immediately from a trivial change of notation: 

• "For simplicity, the target space is discretized into a collection of cells (in the continuous case, the cell 
probabilities can be replaced by densities in the usual way)." [16 pp. 123] 

(In actuality, passage from the discrete-variable to the continuous-variable case introduces fundamental 
complications. [6 pp. 190-194;18]) Given this, a JMP has the form [13 p. 167,16 p. 122] 
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where Z is a set of observations, n is the (unknown) number of targets, xt ,...,xn are discrete location cells, and 
c, ,...,cn are the respective I.D. classes of the targets in these cells. This is essentially the alternative notation for 
a global posterior density described in equations (8) and (14). In JMP, the family of probability distributions p" 
indexed by n are treated as a single joint probabilistic entity by requiring [13 p. 168,16 p. 123] that they satisfy 
the following normalization criterion: 
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(17)
"

PC C.(Xl'...'X,,!Z)

This is the earlier FISST formula (15) assuming that all state variables are discrete. That is, a IMP is a FISST
global posterior density written in terms of the following alternative notation (see equ.'s (8,14»:

(18) P(Cl ,...,c" I Z) = "

PCt,...,C.(Xl ,...,X" I Z)

"IMP" employs the multitarget filtering equations (7a', 7b') with a simplified multitarget motion model (5')

(19) f:+ll a (Yl ,..., y .1 ~ ,..., x.) f«+II«(Y~ I x~)f«+ll«(Y1Ix.)

This motion model assumes that the motions of the targets in a scenario are independent and that targets do not enter
or leave the scene. (In the second prequel to this paper [30] we pointed out that dynamic multitarget scenarios, in
which targets can leave or enter the scene, require general multitarget motion models that more completely capture
the actual complexity of real tracking problems.) Target class and kinematics variables are assumed to be
independent. The multitarget state is computed using the following multitarget estimator:

= argsup plt(XI ,..., Xi I Z)

XI ~...X.

(20) {ii ,... ii } where ii = argmax f p "(Xi ,..., Xn I Z) dxi ,..., dxn

,,~o

6.2 Key Points of Multitarget State Estimation. Once again, this discussion implies that unknown-n filtering
can be accomplished entirely within a purely heuristic generalization of standard filtering theory .In reality , a naive
approach overlooks several key points:

.

.

.

.

Is the proposed estimator equ. (20) optimal or is it an ad hoc, heuristic contrivance?
In particular: Is it Bayes-optimal and is it guaranteed to converge to the correct solution?
Computation of the marginal (Step 1) throws away information contained in the multitarget posterior. What
are the consequences of this for rapidity of convergence?
What are the stability properties of this estimator under high-noise or high-clutter conditions?

In mid-1995 Mahler proved that the multitarget estimator equ. (20) is Bayes-optimal (the proof is reported in
Mathematics of Data Fusion [6 pp. 190-205].) However, it is unclear whether or not this estimator is convergent.
In Section 7 below, we demonstrate that it is likely to be slowly convergent and to produce unstable solutions under
low-observable conditions. At that time, he also proved that another estimator is both provably Bayes-optimal and
provably convergent (see Section 7).

To more fully understand these key points, let us take the position that a naive, heuristic approach is sufficient and,
consequently, that we can proceed immediately to a declaration of victory. We assume that we can define a
multitarget posterior distribution function on a multitarget state space that need not be carefully defined. To keep
things simple, assume that all targets are motionless, exist in one dimension, and are completely specified by their
locations on the real line as measured in meters. Also assume that a single sensor collects a set Z of measurements
from the targets, whose number as well as positions are unknown and are to be estimated. One can write a naive
posterior distribution function f(state I Z) on the multitarget state space, given measurements Z, as follows:

)

=

=   1

...

(17) £   E  Pcl...cS*i xjz) 
"■° «i c« 

This is the earlier FISST formula (15) assuming that all state variables are discrete. That is, a JMP is a FISST 
global posterior density written in terms of the following alternative notation (see equ.'s (8,14)): 

(18)    Pic, cn\Z)   = p" e>(x, xn\Z)   = 

"JMP" employs the multitarget filtering equations (7a', 7b') with a simplified multitarget motion model (5') 

(19) /«"+n«(yi»-..,yjx1)...,xl,)        /.♦n«(yil*i)    /.♦n.(y.l*.) 

This motion model assumes that the motions of the targets in a scenario are independent and that targets do not enter 
or leave the scene. (In the second prequel to this paper [30] we pointed out that dynamic multitarget scenarios, in 
which targets can leave or enter the scene, require general multitarget motion models that more completely capture 
the actual complexity of real tracking problems.) Target class and kinematics variables are assumed to be 
independent.  The multitarget state is computed using the following multitarget estimator: 
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6.2 Key Points of Multitarget State Estimation. Once again, this discussion implies that unknown-« filtering 
can be accomplished entirely within a purely heuristic generalization of standard filtering theory. In reality, a naive 
approach overlooks several key points: 

• Is the proposed estimator equ. (20) optimal or is it an ad hoc, heuristic contrivance? 
• In particular:  Is it Bayes-optimal and is it guaranteed to converge to the correct solution? 
• Computation of the marginal (Step 1) throws away information contained in the multitarget posterior. What 

are the consequences of this for rapidity of convergence? 
• What are the stability properties of this estimator under high-noise or high-clutter conditions? 

In mid-1995 Mahler proved that the multitarget estimator equ. (20) is Bayes-optimal (the proof is reported in 
Mathematics of Data Fusion [6 pp. 190-205].) However, it is unclear whether or not this estimator is convergent. 
In Section 7 below, we demonstrate that it is likely to be slowly convergent and to produce unstable solutions under 
low-observable conditions. At that time, he also proved that another estimator is both provably Bayes-optimal and 
provably convergent (see Section 7). 

To more fully understand these key points, let us take the position that a naive, heuristic approach is sufficient and, 
consequently, that we can proceed immediately to a declaration of victory. We assume that we can define a 
multitarget posterior distribution function on a multitarget state space that need not be carefully defined. To keep 
things simple, assume that all targets are motionless, exist in one dimension, and are completely specified by their 
locations on the real line as measured in meters. Also assume that a single sensor collects a set Z of measurements 
from the targets, whose number as well as positions are unknown and are to be estimated. One can write a naive 
posterior distribution function f(state \ Z) on the multitarget state space, given measurements Z, as follows: 



1(0 Z) = posterior likelihood of zero targets
l(xI I Z) = posterior likelihood of one target in state xI

l(xI ,x2 I Z) = posterior likelihood of two targets in states xI ,x2
l(xI ,...,Xn I Z) = posterior likelihood of n targets in states XI ,...,Xn

Since the cumulative likelihood summed over all multitarget states must be 1, it follows that

f(O I Z) + /(1 Z) + + f(n I Z) + + f(M I Z) = 1

where f(OIZ)=f(0IZ) andf(nIZ)= Sf(Xl'...'xnIZ)dx1 ...dxn for n=l,...,M, and where M is
the maximum expected number of targets in the scenario. Now, let us use a naIve MAP procedure to estimate the
complete state of the multitarget system. Then we would write:

argsup f(Xl ,..., Xn I Z)
n , %1'...'%.

{ i1 ,..., ill }

where n is the estimated number of targets and the xi are the estimated positions of the n
Unfortunately, there is a problem: From the definition of a Riemann integral we know that:

targets

.

.

.

.

f(O I Z) = unitless probability

!(I I Z) = unitless probability , so units of f(xJ I Z) must be I/meter since the units of dxJ are meters

!(21 Z) = unitless probability, so units of f(xJ ,x2 I Z) must be l/meter2
f(n I Z) = unitless probability, so units of f(xJ , ...,xn I Z) must be I/meter n

Consequently the "argsup" operation is not defined since the quantities 1(0 I Z), f(xl I Z) ,..., f(xl ,...,Xn I Z) ,
are inconvnensurable with respect to units of measurement. Thus the MAP estimator cannot even be defined!

One might try to sidestep this problem by using Riemann-Stieltjes integrals. That is. let g(x) be an arbitrary
density function on (single-target) state space and let G(x) = S t g(y) dy be its corresponding cumulative

probability function. Then one could instead defme different multitarget posterior densities h (x I , Xn I Z) using

Riemann-Stieltjes integrals

h(n I Z)

where, now, the multitarget distributions

f(Xl ,..., Xn I Z)

h(Xl ,...,XR I Z) =

g(Xl) ...g(Xn)

are unitless. Then, the multitarget distribution h will not have the incommensurability -of -units problem just noted
and so could be used to define a multitarget MAP estimate. The price, however, is the unacceptable introduction
of an arbitrary Hfudge factor "--the density g--into the concept of a multitarget posterior distribution h.

If we instead turn to the EAP estimator for our salvation, our troubles get even worse. A multitarget posterior
expectation, if it exists, must have the general form S (.xI Xn} !(.xI. Xn} I Z) d(X1 Xn} where the (as yet
to be defmed) integral is taken over all (thus far vaguely defmed) multitarget states (x 1 Xn} .Such an integral
cannot even be defmed unless, at minimum, the multitarget state space is a vector space--in particular, unless it has
a concept of addition/subtraction. But how does one add the zero-target state e; to a single-target state x? Or

... ...

...

=

f(0   Z)   =  posterior likelihood of zero targets 
f(x, | Z)   =  posterior likelihood of one target in state x, 

f(x, ,x2 | Z)   =  posterior likelihood of two targets in states x, ,x2 

f(x, ,...,xn\Z)   =  posterior likelihood of n targets in states x, ,...,x„ 

Since the cumulative likelihood summed over all multitarget states must be 7, it follows that 

f(0 | Z) +f(l   Z) +       +f(n | Z) +      +f(M | Z)   =   1 

where f(0 \ Z) = f(0 Z) and f(n | Z) = J f(x1 ,...,x„ \ Z) dx, • • • dx„ for n = 1,...,M, and where M is 
the maximum expected number of targets in the scenario. Now, let us use a naive MAP procedure to estimate the 
complete state of the multitarget system.  Then we would write: 

{xj ,..., xÄ} ar#sup /(x,,..., xn | Z) 

where    h    is the estimated number of targets and the   Jc,    are the estimated positions of the   h   targets 
Unfortunately, there is a problem:  From the definition of a Riemann integral we know that: 
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Consequently the "argsup" operation is not defined since the quantities f(0 \ Z), f(x, \ Z) ,..., f(x, ,...,x„ \ Z), 
are incommensurable with respect to units of measurement.  Thus the MAP estimator cannot even be defined! 

One might try to sidestep this problem by using Riemann-Stieltjes integrals. That is, let g(x) be an arbitrary 
density function on (single-target) state space and let G(x) = J / g(y) dy be its corresponding cumulative 
probability function. Then one could instead define different multitarget posterior densities h(x, ,...,xn \ Z) using 
Riemann-Stieltjes integrals 

h(n\Z) 

where, now, the multitarget distributions 

Ä(*i ,...,*„ | Z) 
f(x1,...,xH\Z) 

8(xt) -g(xn) 

are unitless. Then, the multitarget distribution h will not have the incommensurability-of-units problem just noted 
and so could be used to define a multitarget MAP estimate. The price, however, is the unacceptable introduction 
of an arbitrary "fudge factor"'--the density g-into the concept of a multitarget posterior distribution h. 

If we instead turn to the EAP estimator for our salvation, our troubles get even worse. A multitarget posterior 
expectation, if it exists, must have the general form j (x; ,...,x^f(^c, ,...,*„) | Z) d(x, ,...,xn) where the (as yet 
to be defined) integral is taken over all (thus far vaguely defined) multitarget states {x, ,...,xn). Such an integral 
cannot even be defined unless, at minimum, the multitarget state space is a vector space-in particular, unless it has 
a concept of addition/subtraction. But how does one add the zero-target state  0  to a single-target state x? Or 
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a single-target state x to a two-target state xI ,X2? We could attempt to address this problem by embedding the
multitarget state space in a larger, enveloping space which is a vector space (as indeed can be done in many ways).
In this case, however, there is no guarantee that the posterior expectation would yield values which are actual
multitarget states. Rather, it is more likely that it would yield values which are contained in the enveloping vector
space and therefore which would have no physical meaning. In summary:

. Having been denied the accustomed security of the classical estimators, we are forced to propose new ones
and demonstrate that they are statistically well-behaved.

Even if a multitarget MAP or EAP estimator could be defined, to prove convergence of the multitarget filter we
would still need to know that the multitarget likelihood function is measurable in the variables y ,...,Zk and
continuous in the variables XI ,...,x.. But measurable with respect to which topology on the multitarget
measurement space? Continuous with respect to which metric on the multitarget state space? The latter question
is far from trivial. What is the distance between a single-target state x and a two-target state xI'xl Or the zero-
target state eJ and the single-target state XI? What is the distance between the two-target states XI ,X2 and X2
,XI if XI ~ xl (The Euclidean metric gives us II (XI ,X~-(X2 ,xJ II = II (XI-X2 ,X2-XJ II ~ 0. But the state "an

F-16 at XI flown by Joe and an F-22 at X2 flown by Ralph" is the same multitarget state as "an F-22 at X2 flown
by Ralph and an F-16 at XI flown by Joe".) One can then try to tinker various metrics for multitarget state space,
only to get pulled into a a morass of arbitrary , ad hoc defmitionizing.

6.3 FISST Optimal Multitarget Estimation. Resolution of such questions is one of the advances made possible
by FISST. The unexpected research difficulties associated with continuous- and discrete-variable " global " (i.e. , joint

multitarget) posterior and prior distributions were quickly recognized following their introduction in Dec. 1994 [34] .
These difficulties were resolved, by July 1995, via the defInition of two new MAP-like multitarget estimators and
verification of their respective optimality properties. These results were reported in Mathematics of Data Fusion
[6 pp. 194-205]. These estimators are:

. Marginal Multitarget (MaM) State Estimator (Provably Bayes-optima1; unproved convergence)

argsup !({Xl ,..., x., I Z)
Xl ~

{it ,..., i., } where Ii arg:ax ~ fi(Xl ,..., x.1 Z) d XI ...dxi

. Joint Multitarget (JoM) State Estimator (Provably Bayes-optimal and convergent): for some constant c,

{ix ,...,~} argsup f({~,...,x.lz) .c"
N,xl x.

(Note: In Mathematics of Data Fusion, MaM was called "GMAP-I" and JoM was called "GMAP-II"

7. Stable Convergence of Multitarget Estimators

The purpose of this section is to describe some of the difficulties associated with multitarget estimation and to assess
the relative merits of the JaM and MoM estimators described in Section 6.3. We will begin with an intuitive
discussion in Section 7.1 that illustrates why the MaM estimator can be expected to have less desirable performance
than the JaM estimator. Then, in Section 7.2, we will verify this assessment by analytically comparing the
convergence properties of these two estimators in a simple model problem.

7.1 Why Estimation Using Marginal Distributions Leads to Trouble. Under low-observable conditions special
care must be exercised in the selection of state estimators in both single-target and multitarget problems. Consider
the following analogy. The following joint posterior

n
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{xx,..., x,j} argsup /({xx x„ | Z)        where      n argmax — j/(xx,..., xK | Z) dxl -dx 
xi ** 

• Joint Multitarget (JoM) State Estimator (Provably Bayes-optimal and convergent):  for some constant c, 

{Xj,..., x,,} argsup /({Xj,..., x, | Z) • c " 

(Note: In Mathematics of Data Fusion, MaM was called "GMAP-I" and JoM was called "GMAP-II" 

7.  Stable Convergence of Multitarget Estimators 

The purpose of this section is to describe some of the difficulties associated with multitarget estimation and to assess 
the relative merits of the JoM and MaM estimators described in Section 6.3. We will begin with an intuitive 
discussion in Section 7.1 that illustrates why the MaM estimator can be expected to have less desirable performance 
than the JoM estimator. Then, in Section 7.2, we will verify this assessment by analytically comparing the 
convergence properties of these two estimators in a simple model problem. 

7.1 Why Estimation Using Marginal Distributions Leads to Trouble. Under low-observable conditions special 
care must be exercised in the selection of state estimators in both single-target and multitarget problems. Consider 
the following analogy. The following joint posterior 



f(x,y) = ~ N1.O(x) NO,I(Y-2) + ~ NO.fXJl(X-5) N2.o(Y)

describes the current position of a target on the x-y plane, where N,,(x) denotes a one-dimensional normal
distribution with variance ~. This distribution is bimodal with a large dominant mode near (5,0) and a small
minor mode near (0,2). The true joint estimate of (x,y) is the joint MAP estimate

(XMAP 'YMAP) = argsupx. yf(x,y) = (5,0)

The EAP estimate is (XEAP 'YEAP) = (0,2) + (5,0) = (5,2). This estimate, which lies on a low-probability part

of the tail of the dominant mode, is not very good. The reason is that the value of the EAP estimator is strongly
influenced by the small minor mode. Suppose, instead, that we compute the marginal posteriors

f(y) = f(x,y) dx = ~ No.J(Y-2) + ~ N2.o(y), f(x) = f(x,y) dy = * N1.o(x) + * NO.001(x-5)

Notice that x,y are correlated since f(x,y) ;C f(x) f(y). Three possible marginal estimates can be derived:

(argsupxJ(x), argsupyJ(y)) = (5, argsupyJ(5,y)) = (argsupxJ(x,2), 2) = (5,2)

As with the EAP estimate, these estimates are strongly influenced by the small minor mode.

Now, under low-observable conditions a posterior f(x,y I Z) will be highly multi-modal. Even if it has a single
well-localized dominant mode, there will be a number of small minor "clutter" modes that will tend to jump
erratically from time-step to time-step. If we use the EAP estimator or any of the above marginal-based estimators,
the previous example shows that their values will all tend to unstable (i.e. , vary erratically) whereas the joint MAP
estimate will follow the dominant mode and therefore tend to be coherent. The same reasoning applies even if one
of the state variables is discrete--for example, if the posterior f(x,(11 I Z) where x is position (continuous) and
(11 is target identity (discrete). If x and (11 are correlated (f(x,(11) ~ f(x) f(11) then deducing kinematics and target
I.D. from the marginals f(11) = I f(x,(11) dx, f(x) = E..f(x,(11) will lead to the same kinds of instability.

In fact, the same reasoning applies to determination of target number and target kinematics/I.D. in the multitarget
case. If target number is correlated with target states, basing estimates on the marginal posterior f(O I Z) =
f(eJ I Z), f(n I Z) = I f(Xl ,...,x" I Z) dx1 ...dx" will lead to instability under low-observable conditions. The

following example highlights this behavior. Suppose that we are given the multitarget posterior:

1(0 I Z) = l-q, f(x I Z) = q N,,(x)

where u is very small--i.e., the nonnal distribution has a very narrow, high peak that strongly indicates the
presence of a target. The MaM estimator will decide in favor of the presence of a target if

1-q = f(O I Z) < f(l I Z) = q

i.e., if q > ~. That is, the MaM estimator completely ignores critical information contained in the posterior--
namely the variance ~ .The JaM estimator, on the other hand, will decide in favor of the presence of a target if

ft:0IZ) c .argsup f(x I Z)

%
l-q <= -.£!L

~o

To evaluate this inequality we need to select a value for c. Assume that the prior multitarget density is uniform
in the sense that fo(es I Z) = ~, fo(x I Z) = ~ A-1. If the prior is accepted as a standard, the balancing-point
for deciding between yes-target and no-target is ~ = fo(O I Z) = c .argsupxfo(x I Z) = ~cA-1 and thus c = A.

=

f(x,y)   =   'A NL0(x) N0J(y-2) + 'A N0M1(x-5) N2,0(y) 

describes the current position of a target on the x-y plane, where NJx) denotes a one-dimensional normal 
distribution with variance a2. This distribution is bimodal with a large dominant mode near (5,0) and a small 
minor mode near  (0,2).  The true joint estimate of (x,y)  is the joint MAP estimate 

(•W.iwJ   =  argsupxyf(x,y)   =   (5,0) 

The EAP estimate is &EAP >JEAP) = (0,2) + (5,0) = (5,2). This estimate, which lies on a low-probability part 
of the tail of the dominant mode, is not very good. The reason is that the value of the EAP estimator is strongly 
influenced by the small minor mode.  Suppose, instead, that we compute the marginal posteriors 

f(y)   =      f(x,y) dx   =   'A N0J(y-2) + 'A N2,0(y), f(x)   =       f(x,y) dy   =   'A N,Jx) + 'A N0M1(x-5) 

Notice that x,y are correlated since f(x,y) j* f(x) f(y).  Three possible marginal estimates can be derived: 

(argsupxf(x), argsupyffy))   =   (5, argsupyf(5,y))   =   (argsupxf(x,2), 2)   =   (5,2) 

As with the EAP estimate, these estimates are strongly influenced by the small minor mode. 

Now, under low-observable conditions a posterior f(x,y \ Z) will be highly multi-modal. Even if it has a single 
well-localized dominant mode, there will be a number of small minor "clutter" modes that will tend to jump 
erratically from time-step to time-step. If we use the EAP estimator or any of the above marginal-based estimators, 
the previous example shows that their values will all tend to unstable (i.e., vary erratically) whereas the joint MAP 
estimate will follow the dominant mode and therefore tend to be coherent. The same reasoning applies even if one 
of the state variables is discrete—for example, if the posterior f(x,u \ Z) where x is position (continuous) and 
w is target identity (discrete). If x and w are correlated (f(x,u) ^ f(x)f(w)) then deducing kinematics and target 
I.D. from the marginals /fco) =  J f(x,w) dx, f(x)   =  Euf(x,o)) will lead to the same kinds of instability. 

In fact, the same reasoning applies to determination of target number and target kinematics/I.D. in the multitarget 
case. If target number is correlated with target states, basing estimates on the marginal posterior f(0 j Z) = 
f(0 | Z), f(n | Z) = J f(x, ,...,x„ | Z) dxt • • • dxn will lead to instability under low-observable conditions. The 
following example highlights this behavior.  Suppose that we are given the multitarget posterior: 

f(0 | Z)   =   1-q, f(x \Z)   =   q NJx) 

where a is very small~i.e., the normal distribution has a very narrow, high peak that strongly indicates the 
presence of a target.  The MaM estimator will decide in favor of the presence of a target if 

1-q   = f(0 \Z)   < f(l\Z)   =   q 

i.e., if q > 'A. That is, the MaM estimator completely ignores critical information contained in the posterior- 
namely the variance a2. The JoM estimator, on the other hand, will decide in favor of the presence of a target if 

\-q     =    fie>\Z)     <    c-argsupf(x\Z) cq 

fin o 

To evaluate this inequality we need to select a value for c. Assume that the prior multitarget density is uniform 
in the sense that fo(0 \Z) = 'A, f0(x \Z) = 'A A'1. If the prior is accepted as a standard, the balancing-point 
for deciding between yes-target and no-target is 'A = f0(0 \Z) = c -argsupxf0(x | Z) = 'AcA' and thus c = A. 



Accordingly, the test for the JaM estimator is

A

a
{i"ii(q-l- 1)

>

In other words, the JaM estimator makes a more nuanced decision by balancing the two pieces of information that
the posterior contains (i.e., q and (1). Information supporting a no-target decision--e.g. q is small--can be
countermanded by sufficiently strong information supporting a yes-target decision--i.e., (1 is sufficiently small.

7.2 Analytical Comparison of the MaM and JaM Estimators. The purpose of this section is to derive an
analytical comparision between the convergence behaviors of the JaM and MaM estimators in a simple model
problem. Assume that a single motionless target in one dimension is located at Xo and is observed by a single
sensor whose noise density is f(z I x) = f(z-x) where f(x) is a mean-zero density. We also assume that the sensor
detects the target with probability PD = I, and that the target is obscured by independent, uniformly distributed,
and extremely dense Poisson clutter. That is, the typical observation has the form Z = T U W where T = T(X)

is the single observation generated by the target and W are the clutter observations. Assume that the size of the
region of interest is A. Multitarget states have the form X = {x} and multitarget observations have the form Z
= {ZJ , ...,z"J or Z = 0. The FISST multitarget calculus shows that the multitarget likelihoods for T, W are

.z"J = e-h Am A-ntfr(0 I x) = 0, fw(zjfr(z I x) = f(z-x),

where A is the Poisson parameter. The FISST calculus also shows that the true multitarget likelihood f(Z I X)
for all observations (target and clutter) is given by f(ZI ,...,Zm I 0) = e->. Am A-m, f(0 I 0) = e->., and

/(01 x)!(Zl ,..., Zm I 0 ) 0!(ZI ,..., z.1 X) =

Define g(0 I x) = 0, g(0 I 0) = 1, and

g(Zl ,..., Zm I X) g(Zl '...'Zm 10) 1

Let 2] ,""",2k be a sequence of observation-sets and zik} = {2] ,""",2J.

be the multitarget prior distribution" Since the posterior distribution is

Also, let !o(eJ) = l-Q, !o(x) = QA-I

f(Z11 X) ...f(Zt I X) fo(X) g(Zll X) ...g(Z",1 X) fo(X)
f(X I z(k» = =

it follows that we can use g(Z I X) as though it were the actual multitarget likelihood function. Now since A is
assumed to be very large, if Z is any observation-set then with very high probability Z-{xaJ is a large sample of
data drawn from the uniform clutter distribution c(z) = A-1. Consequently, the quantity

K(x) =

is a Parzen kernel estimator of the uniform distribution: K(x} = c(x} = A-1. So,

= =

Accordingly, the test for the JoM estimator is 

o 

In other words, the JoM estimator makes a more nuanced decision by balancing the two pieces of information that 
the posterior contains (i.e., q and a). Information supporting a no-target decision~e.g. q is small-can be 
countermanded by sufficiently strong information supporting a yes-target decision—i.e., a is sufficiently small. 

7.2 Analytical Comparison of the MaM and JoM Estimators. The purpose of this section is to derive an 
analytical comparision between the convergence behaviors of the JoM and MaM estimators in a simple model 
problem. Assume that a single motionless target in one dimension is located at x0 and is observed by a single 
sensor whose noise density is f(z \ x) = f(z-x) where f(x) is a mean-zero density. We also assume that the sensor 
detects the target with probability pD = 1, and that the target is obscured by independent, uniformly distributed, 
and extremely dense Poisson clutter. That is, the typical observation has the form Z = T U W where T = T(X) 
is the single observation generated by the target and W are the clutter observations. Assume that the size of the 
region of interest is A. Multitarget states have the form X = {x} and multitarget observations have the form Z 
= {zi .■■■,zm} or Z =   0.  The FISST multitarget calculus shows that the multitarget likelihoods for T, W are 

fr(0\x)   =   0,       fT(z\x)   = f(z-x),       fw(z,      ,zj   =   cxXm^ 

where X is the Poisson parameter. The FISST calculus also shows that the true multitarget likelihood f(Z \ X) 
for all observations (target and clutter) is given by   f(z, ,...,zm\ 0)   =  e'x\m A™, f(0 \ 0)   =  e"\ and 

/(z,,...,zml*)     =    f(z1,..,zm\0) f(<*\x) 0 

Define g(0 \ x)   =  0,  g(0 \ 0)   =  1,  and 

g(zlt...,zm\x) g(Zl,-,Zml<2>) 

Let Z, ,...,Zk be a sequence of observation-sets and Z® = {Z, ,...,ZJ.   Also, let fo(0) = 1-Q, f0(x) = QA~' 
be the multitarget prior distribution. Since the posterior distribution is 

fix | z*>)   =      /(Zl'X)""/(z*'x) fo(x)      =       8(Zl'X)'"8iz»'x) fo(X) 

it follows that we can use g(Z \ X) as though it were the actual multitarget likelihood function. Now since X is 
assumed to be very large, if Z is any observation-set then with very high probability Z-fxJ is a large sample of 
data drawn from the uniform clutter distribution c(z) = A'1.  Consequently, the quantity 

1^1   tez 

is a Parzen kernel estimator of the uniform distribution: K(x) ~ c(x) = A'1.   So, 



g(Zlx)
I z I + !!:. f(xo -x )

T".

Define

( I zll ...I Zk I )1/k

"'

~

A
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where Ageo is the geometric mean of the Poisson distribution and Ageo < A Thus a < 1

Case I: Target Not in the Scene. Suppose that a target is not present in the scene. Then g(ZikJ I 0) = I,

g(ZikJ I x) = cI and so f(O I zII:}) = (I-Q)/(I-Q+QcI). If we choose the prior as the reference standard, then
the JoM constant c is determined by the equation I-Q = c .Q .A-1 or c = A(el-I). Then "no-target" tests are:

el-l > 01 1 > ~(MaM), (JoM)

Case 11: Target Present in the Scene, with High-Resolution Sensor. By saying that the sensor resolution is very
good we mean that AH/A 1 where H = f(O). In this case

Izkl
"'

CX1 + -g(Z(k) I X) .

f j(X)k dx z d-l fk1/2. That is, j(X)k has

Then

Assume that f(x) is "Gaussian-Iike" in the sense that f(O)k = H" and

only negligible probability outside of the interval [ -H1/(11l, + H1k-1~ .

if X=0

ifX={x}
.f{X I z(1» 0(

{ l-Q

QA -1«<1 + Ak}.. -kj(XO-X))

and it may be shown that

Q"k + ~ ( ~
) k-l

"'.fk "'

=

and, consequently, that the "yes-target" tests for the MaM and JaM estimators are:

!!.:'!) k

A
(MoM) , (JoM)"'(Q-1-2).ff;f < 1 <

Therefore, MaM will generally converge more slowly than JoM. However, the differences will be most pronounced
when there is significant prior belief that no target is present in the scene (i.e. , Q = 0) .

8. Conclusions

In this paper we have demonstrated that when one tries to generalize recursive Bayesian nonlinear filtering to the
multitarget case with unknown number of targets, one quicklyencounters serious troubles that directly bear on

( -¥ )k

...

g(z\x)       i|L + A/(Xo.x) 

Define 

^o „ (iz,i-izjy 

where  \gt0 is the geometric mean of the Poisson distribution and \geo < X   Thus a < 1 

Case I: Target Not in the Scene. Suppose that a target is not present in the scene. Then g(Z® \ 0) = 1, 
g(Z°° | x) =s a* and so f(0 \ 2?>) — (l-Q)/(l-Q+Qof). If we choose the prior as the reference standard, then 
the JoMconstant c is determined by the equation 1-Q = cQ -A'1 or c = A(Q'-1). Then "no-target" tests are: 

Q'-l   >   ak       (MaM), 1   >   a*      (JoM) 

Case II: Target Present in the Scene, with High-Resolution Sensor. By saying that the sensor resolution is very 
good we mean that AH/K 1  where H=f(0).  In this case 

g(Z<n\x) J^L -     ak + — 

Assume that f(x) is "Gaussian-like" in the sense that f(0)k = If and   \ f(x)k dx « tf-'/k"2. That is, /(3c/ has 
only negligible probability outside of the interval [-H'km, +H'k"*].  Then 

Ariz«)    -    l—i,.*.^ 
l-<? ifX=<z> 

QA"»(a* + A*r*/{jc0-x))       if X={*} 

and it may be shown that 

=     n«* 4.      „   t       Q  (HAY'1 

=     Qa* + —— |-r-| 

and, consequently, that the "yes-target" tests for the MaM and JoM estimators are: 

HQ^-DjkTi   <     —) (MaM) , 1   <   (~^\      (Jo. <M) 

Therefore, MaM will generally converge more slowly than JoM. However, the differences will be most pronounced 
when there is significant prior belief that no target is present in the scene (i.e., Q ~ 0). 

8. Conclusions 

In this paper we have demonstrated that when one tries to generalize recursive Bayesian nonlinear filtering to the 
multitarget case with unknown number of targets, one quickly encounters serious troubles that directly bear on 



practice. Specifically, Bayes-optimal multitarget estimation and filtering encounters fundamental conceptual and
practical difficulties when the number of targets is unknown. What is at issue is neither theoretical hair-splitting
nor mere mathematical "bookkeeping. " Rather, what is actually at stake is our ability to do Bayes-optimal

multitarget filtering and estimation at all and, moreover, our ability to even know what "Bayes-optimal" means in
such a context. We explained the following key points underlying multitarget recursive Bayesian nonlinear filtering:

.

.

.

.

.

Reconceptualize a group of unknown targets, of unknown number, as a single joint multitarget system
Reconceptualize target number and individual target states as just specific parameters of a single joint
multitarget state
Reconceptualize priors, posteriors, and likelihoods as single densities involving an unknown number of
targets and target states
Reconceptualize detection and estimation as different aspects of a single, simultaneous statistical process
Recognize that one cannot just "declare victory": reconceptualization is the easy part, because it leads to
unexpected theoretical and practical difficulties that cannot be swept under the rug

We concretely illustrated the meaning of these points by contrasting true multitarget recursive Bayesian nonlinear
filtering with three approaches that fail to address these difficulties: the EAMLE and generalized EAMLE filters,
and a renaming of a truncated version of FISST called "joint multitarget probabilities (IMP". We concluded that
the JaM multitarget state estimator should exhibit better performance than the MaM estimator .

References

[1] Y. Bar-Shalom and X.-R. Li (1993) Estimation and Tracking: Principles, Techniques, and Software, Artech House
[2] Y. Bar-Shalom and T .E. Fortman (1988) Tracking and Data Association, Academic Press
[3] M. Bardin (1984) "Multidimensional Point Processes and Random Closed Sets, " i. Applied Probability, vol. 21, pp. 173-178

[4] C.A. Barlow, L.D. Stone, M.D. Finn (1996) "Unified data fusion," Proc. 9th Nan Symp. on Sensor Fusion, pp. 321-330
[5] R.E. Bethel and G.J. Paras (1994) " A PDF multi-target tracker," IEEE Trans. on Aerospace and Electronic Systems, Vol.

30 No.2, pp. 386-403
[6] I.R. Goodman, R.P .S. Mahler, and H. T .Nguyen (1997) Mathematics of Data Fusion, Kluwer
(7] y .C. Ho and R.C.K. Lee (1964) "A Bayesian Approach to Problems in Stochastic Estimation and Control," IEEE Trans.
on Automatic Control, Vol. AC-9, pp. 333-339
[8] J. Goutsias, R. Mahler, and H.T. Nguyen, eds. (1997) Random Sets: Theory and Applications, Springer, 1997
[9] A.H. Jazwinski (1970) Stochastic Processes and Filtering Theory, Academic Press
[10] E. W. Kamen (1992) "Multiple target tracking based on symmetric measurement equations," IEEE Trans. on Auto. Contr.,
Vol. 37, pp. 371-374
[11] E. W .Kamen, y .J .Lee, and C.R. Sastry (1994) " A parallel SME filter for tracking multiple targets in three dimensions,"

SPIE Proceedings Vol. 2235, pp. 417-428
[12] E. W .Kamen and C.R. Sastry (1993) "Multiple target tracking using products of position measurement, " IEEE Trans. on

Aerospace and Electronics Systems, Vol. 29, pp. 476-493
[13] K. Kastella (1996) "Discrimination Gain for Sensor Management in Multitarget Detection and Tracking," Proc. 1996
IMACS Multiconference on Computational and Engineering Applications (CESA '96); Symposium on Control, Optimization, and
Supervision, Vol. I, Lille France, July 9-12 1996, pp. 167-172
[14] K. Kastella (1995) "Event-Averaged Maximum Likelihood Estimation and Mean-Field Theory in Multitarget Tracking,"
IEEE Trans. Auto. Control, Vol. 40 No.6, pp. 1070-1074
[15] K. Kastella (1997) "Information Theory and Sensor Management," in A. Friedman (ed.), Mathematics in Industrial
Problems, Part 9, Springer-Verlag, pp. 36-44
[16] K. Kastella (1997) "Joint multitarget probabilities for detection and tracking," SPIE Vol. 3086, pp. 122-128
[17] K. Kastella (1993) "Theater Acoustic Correlator Tracker," Lockheed Martin internal technical report, May 10 1993
[18] V. Krishnamurthy and R.J. Evans (1995) "The data association problem for Hidden Markov Models," Proc. 34th IEEE
ConI on Decision and Contr., Dec. 1995, New Orleans, pp. 2764-2765
[19] A.D. Lanterman, M.I. Miller, D.L. Snyder, and W.J. Miceli (1994) "Jump-diffusion processes for the automated
understanding of FLIR scenes," SPIE Proceedings, Vol. 2234, pp. 416-427
[20] R. Mahler (1994) "A Bayesian Interpretation of the Random-Set Approach to Data Fusion," Lockheed Martin Internal

practice. Specifically, Bayes-optimal multitarget estimation and filtering encounters fundamental conceptual and 
practical difficulties when the number of targets is unknown. What is at issue is neither theoretical hair-splitting 
nor mere mathematical "bookkeeping." Rather, what is actually at stake is our ability to do Bayes-optimal 
multitarget filtering and estimation at all and, moreover, our ability to even know what "Bayes-optimal" means in 
such a context. We explained the following key points underlying multitarget recursive Bayesian nonlinear filtering: 

Reconceptualize a group of unknown targets, of unknown number, as a single joint multitarget system 
Reconceptualize target number and individual target states as just specific parameters of a single joint 
multitarget state 
Reconceptualize priors, posteriors, and likelihoods as single densities involving an unknown number of 
targets and target states 
Reconceptualize detection and estimation as different aspects of a single, simultaneous statistical process 
Recognize that one cannot just "declare victory": reconceptualization is the easy part, because it leads to 
unexpected theoretical and practical difficulties that cannot be swept under the rug 

We concretely illustrated the meaning of these points by contrasting true multitarget recursive Bayesian nonlinear 
filtering with three approaches that fail to address these difficulties: the EAMLE and generalized EAMLE filters, 
and a renaming of a truncated version of FISST called "joint multitarget probabilities (JMP". We concluded that 
the JoM multitarget state estimator should exhibit better performance than the MaM estimator. 

References 

[I] Y. Bar-Shalom and X.-R. Li (1993) Estimation and Tracking: Principles, Techniques, and Software, Artech House 
[2]  Y. Bar-Shalom and T.E. Fortman (1988) Tracking and Data Association, Academic Press 
P] M. Bardin(1984) "Multidimensional Point Processes and Random Closed Sets," /. Applied Probability, vol. 21, pp. 173-178 
[4] C.A. Barlow, L.D. Stone, M.D. Finn (1996) "Unified data fusion," Proc. 9th Nat'l Symp. on Sensor Fusion, pp. 321-330 
[5] R.E. Bethel and G.J. Paras (1994) "A PDF multi-target tracker," IEEE Trans, on Aerospace and Electronic Systems, Vol. 
30 No. 2, pp. 386-403 
[6]  I.R. Goodman, R.P.S. Mahler, and H.T. Nguyen (1997) Mathematics of Data Fusion, Kluwer 
[7]  Y.C. Ho and R.C.K. Lee (1964) "A Bayesian Approach to Problems in Stochastic Estimation and Control," IEEE Trans. 
on Automatic Control, Vol. AC-9, pp. 333-339 
[8]  J. Goutsias, R. Mahler, and H.T. Nguyen, eds. (1997) Random Sets: Theory and Applications, Springer, 1997 
[9]  A.H. Jazwinski (1970) Stochastic Processes and Filtering Theory, Academic Press 
[10] E.W. Kamen (1992) "Multiple target tracking based on symmetric measurement equations," IEEE Trans. onAuto. Contr., 
Vol. 37, pp. 371-374 
[II] E.W. Kamen, Y.J. Lee, and C.R. Sastry (1994) "A parallel SME filter for tracking multiple targets in three dimensions," 
SPIE Proceedings Vol. 2235, pp. 417^28 
[12] E.W. Kamen and C.R. Sastry (1993) "Multiple target tracking using products of position measurement," IEEE Trans, on 
Aerospace and Electronics Systems, Vol. 29, pp. 476-493 
[13]   K. Kastella (1996) "Discrimination Gain for Sensor Management in Multitarget Detection and Tracking," Proc. 1996 
IMACS Multiconference on Computational and Engineering Applications (CESA'96); Symposium on Control, Optimization, and 
Supervision, Vol. 1, Lille France, July 9-12 1996, pp. 167-172 
[14] K. Kastella (1995) "Event-Averaged Maximum Likelihood Estimation and Mean-Field Theory in Multitarget Tracking," 
IEEE Trans. Auto. Control, Vol. 40 No. 6, pp. 1070-1074 
[IS]   K. Kastella (1997) "Information Theory and Sensor Management," in A. Friedman (ed.), Mathematics in Industrial 
Problems, Part 9, Springer-Verlag, pp. 36-44 
[16]  K. Kastella (1997) "Joint multitarget probabilities for detection and tracking," SPIE Vol. 3086, pp. 122-128 
[17] K. Kastella (1993) "Theater Acoustic Correlator Tracker," Lockheed Martin internal technical report, May 10 1993 
[18]  V. Krishnamurthy and R.J. Evans (1995) "The data association problem for Hidden Markov Models," Proc. 34th IEEE 
Conf. on Decision and Contr., Dec. 1995, New Orleans, pp. 2764-2765 
[19]   A.D. Lanterman, M.I. Miller, D.L. Snyder, and W.J. Miceli (1994) "Jump-diffusion processes for the automated 
understanding of FLIR scenes," SPIE Proceedings, Vol. 2234, pp. 416-427 
[20]  R. Mahler (1994) "A Bayesian Interpretation of the Random-Set Approach to Data Fusion," Lockheed Martin Internal 



Technical Report, dated April 11 1994
[21] R. Mahler (1997) "Decisions and Data Fusion," Proc. 1997 Nat'l Symp. on Sensor and Data Fusion, Apri114-17 1997 ,

M.I.T. Lincoln Laboratories, pp. 71-87
[22] R. Mahler (1994) "Global Integrated Data Fusion," Proc. Seventh Nat'l Symp. on Sensor Fusion, Vol. I (Unclassified),
Sandia National Laboratories, Albuquerque NM, March 16-18 1994, ERIM, Ann Arbor, pp. 187-199
[23] R. Mahler (1996) "Global Optimal Sensor Allocation," Proceedings of the Ninth National Symposium on Sensor Fusion,
Vol. I (Unclassified), Mar. 12-14 1996, Naval Postgraduate School, Monterey CA, pp. 347-366
[24] R. Mahler (1998) "Global posterior densities for sensor management," SPIE Vol. 3365, pp. 252-263
[25] R. Mahler (1998) "Information for fusion management and performance estimation," SPIE Vol. 3374, pp. 64-75
[26] R. Mahler (1995) "Information Theory and Data Fusion," Proc. Eight Nat'l Symp. on Sensor Fusion, Vol. I (Unclassified),
Dallas TX, March 15-171995, ERIM, Ann Arbor, pp. 279-292
[27] R. Mahler (1993) "Integrated Random-Set Estimation and Detection: Numerical Example," Lockheed Martin Internal
Technical Report, dated January 25 1994
[28] R. Mahler (1997) "Measurement models for ambiguous evidence using conditional random sets, " SPIE Proceedings, Vol.

3068, pp. 40-51
[29] R. Mahler (1998) "Multisource, multitarget filtering: A unified approach," SPIE Proceedings, Vol. 3373, pp. 296-307
[30] R. Mahler (1999) "Multitarget Markov Motion Models," SPIE Proceedings, Vol. 3720, to appear
[31] R. Mahler (1995) Nonadditive probability , finite-set statistics, and information fusion," Proc. 34th IEEE ConI on Decision
and Control, New Orleans, Dec. 1995, pp. 1947-1952
[32] R. Mahler (1994), "The random set approach to data fusion," SPIE Vol. 2234, pp. 287-295
[33] R. Mahler (1996) "Unified data fusion: fuzzy logic, evidence, and rules," SPIE Vol. 2755, pp. 226-237
[34] R. Mahler (1996/1994) " A Unified Foundation for Data Fusion," in F.A. Sadjadi, ed., Selected Papers on Sensor and Data

Fusion, SPIE Vol. MS-124, SPIE Optical Engineering Press, Bellingham W A, pp. 325-345; reprinted from Proc. Seventh Joint
Service Data Fusion Symp. , Vol. I Part 1 (Unclassified), Oct. 25-28 1994, Johns Hopkins Applied Physics Laboratory, Laurel
MD, Naval Air Development Center, Warminster PA, pp. 153-173
[35] R. Mahler (1995) "Unified nonparametric data fusion," SPIE Vol. 2484, pp. 66-74
[36] G. Matheron (1975) Random Sets and Integral Geometry, J. Wiley, New York
[37] M.I. Miller, R.S. Teichman, A. Srivistava, J.A. O'Sullivan, and D.L. Synder (1993) "Jump-diffusion processes for
automated tracking-target recognition," 1993 SPIE ConI on Information Sciences and Systems, Baltimore, March 24-26, Johns

Hopkins
[38] D.J. Muder and S.D. O'Neil (1993) "The multi-dimensional SME filter for multitarget tracking," SPIE Proceedings Vol.
1954, pp. 587-599
[39] N. Portenko, H. Salehi, and A. Skorokhod (1997) "On optimal filtering of multitarget tracking systems based on point
processes observations," Random Operators and Stochastic Equations, vol. 1, pp. 1-34
[40] S. Musick, K. Kastella, and R. Mahler (1998) " A practical implementation of joint multitarget probabilities," SPIE Vol.

3374, pp. 26-37
[41] H. W. Sorenson (1988) "Recursive Estimation for Nonlinear Dynamic Systems," in J.C. Spall, ed., Bayesian Analysis of
Time Series and Dynamic Models, Marcel Dekker
[42] A. Srivistava, N. Cutaia, M.I. Miller, J .A. O'Sullivan, and D.L. Snyder (1992) "Multi-target narrowband direction fmding
and tracking using motion dynamics," Proc. 3Oth Allerton ConI on Communication, Control, and Computing, U. of minois,
Urbana, pp. 563-570
[43] H.L. van Trees (1968) Detection, Estimation, and Modulation Theory, Part I, John Wiley and Sons
[44] A. Wald (1949) "Note on the consistency of the maximum likelihood extimator," Ann. Math. Stat., vol. 20, pp. 595-601
[45] R.B. Washburn (1987) " A random point process approach to multiobject tracking," Proc. Amer. Contr. ConI, Vol. 3,

pp. 1846-1852
[46] X. Xie and R.J. Evans (1991) "Multiple target tracking and multiple frequency line tracking using Hidden Markov
Models," IEEE Trans. on Sig. Proc., Vol. 39, pp. 2659-2676

Technical Report, dated April 11 1994 
[21]  R. Mahler (1997) "Decisions and Data Fusion," Proc. 1997Nat'l Symp. on Sensor and Data Fusion, April 14-17 1997, 
M.I.T. Lincoln Laboratories, pp. 71-87 
[22]  R. Mahler (1994) "Global Integrated Data Fusion," Proc. Seventh Nat'l Symp. on Sensor Fusion, Vol. I (Unclassified), 
Sandia National Laboratories, Albuquerque NM, March 16-18 1994, ERIM, Ann Arbor, pp. 187-199 
[23]  R. Mahler (1996) "Global Optimal Sensor Allocation," Proceedings of the Ninth National Symposium on Sensor Fusion, 
Vol. I (Unclassified), Mar. 12-14 1996, Naval Postgraduate School, Monterey CA, pp. 347-366 
[24]  R. Mahler (1998) "Global posterior densities for sensor management," SPffi Vol. 3365, pp. 252-263 
[25]  R. Mahler (1998) "Information for fusion management and performance estimation," SPIE Vol. 3374, pp. 64-75 
[26] R. Mahler (1995) "Information Theory and Data Fusion," Proc. Eight Nat'l Symp. on Sensor Fusion, Vol. I (Unclassified), 
Dallas TX, March 15-17 1995, ERIM, Ann Arbor, pp. 279-292 
[27]   R. Mahler (1993) "Integrated Random-Set Estimation and Detection:   Numerical Example," Lockheed Martin Internal 
Technical Report, dated January 25 1994 
[28] R. Mahler (1997) "Measurement models for ambiguous evidence using conditional random sets," SPIE Proceedings, Vol. 
3068, pp. 40-51 
[29]  R. Mahler (1998) "Multisource, multitarget filtering:  A unified approach," SPIE Proceedings, Vol. 3373, pp. 296-307 
[30]  R. Mahler (1999) "Multitarget Markov Motion Models," SPIE Proceedings, Vol. 3720, to appear 
[31] R. Mahler (1995) Nonadditive probability, finite-set statistics, and information fusion," Proc. 34th IEEE Conf. on Decision 
and Control, New Orleans, Dec. 1995, pp. 1947-1952 
P2]  R. Mahler (1994), "The random set approach to data fusion," SPIE Vol. 2234, pp. 287-295 
[33]  R. Mahler (1996) "Unified data fusion:  fuzzy logic, evidence, and rules," SPIE Vol. 2755, pp. 226-237 
[34] R. Mahler (1996/1994) "A Unified Foundation for Data Fusion," inF.A. Sadjadi, ed., Selected Papers on Sensor and Data 
Fusion, SPIE Vol. MS-124, SPIE Optical Engineering Press, Bellingham WA, pp. 325-345; reprinted from Proc. Seventh Joint 
Service Data Fusion Symp., Vol. I Part 1 (Unclassified), Oct. 25-28 1994, Johns Hopkins Applied Physics Laboratory, Laurel 
MD, Naval Air Development Center, Warminster PA, pp. 153-173 
[35]  R. Mahler (1995) "Unified nonparametric data fusion," SPIE Vol. 2484, pp. 66-74 
[36]  G. Matheron (1975) Random Sets and Integral Geometry, J. Wiley, New York 
[37]   M.I. Miller, R.S. Teichman, A. Srivistava, J.A. O'Sullivan, and D.L. Synder (1993) "Jump-diffusion processes for 
automated tracking-target recognition," 1993 SPIE Conf. on Information Sciences and Systems, Baltimore, March 24-26, Johns 
Hopkins 
[38] D.J. Muder and S.D. O'Neil (1993) "The multi-dimensional SME filter for multitarget tracking," SPIE Proceedings Vol. 
1954, pp. 587-599 
[39]   N. Portenko, H. Salehi, and A. Skorokhod (1997) "On optimal filtering of multitarget tracking systems based on point 
processes observations," Random Operators and Stochastic Equations, vol. 1, pp. 1-34 
[40]  S. Musick, K. Kastella, and R. Mahler (1998) "A practical implementation of joint multitarget probabilities," SPIE Vol. 
3374, pp. 26-37 
[41] H.W. Sorenson (1988) "Recursive Estimation for Nonlinear Dynamic Systems," in J.C. Spall, ed., Bayesian Analysis of 
Time Series and Dynamic Models, Marcel Dekker 
[42] A. Srivistava, N. Cutaia, M.I. Miller, J.A. O'Sullivan, and D.L. Snyder (1992) "Multi-target narrowband direction finding 
and tracking using motion dynamics," Proc. 30th Allerton Conf. on Communication, Control, and Computing, U. of Illinois, 
Urbana, pp. 563-570 
[43]  H.L. van Trees (1968) Detection, Estimation, and Modulation Theory, Part I, John Wiley and Sons 
[44] A. Wald (1949) "Note on the consistency of the maximum likelihood extimator," Ann. Math. Stat., vol. 20, pp. 595-601 
[45]  R.B. Washburn (1987) "A random point process approach to multiobject tracking," Proc. Amer. Contr. Conf, Vol. 3, 
pp. 1846-1852 
[46]   X. Xie and R.J. Evans (1991) "Multiple target tracking and multiple frequency line tracking using Hidden Markov 
Models," IEEE Trans, on Sig. Proc, Vol. 39, pp. 2659-2676 



Appendix: "Generalized EAMLE" [17]

To illustrate the CMLE method. consider the problem of tracking a collection of I-dimensional targets moving in a surveillaoce volume of length L. The number of targets T is known.
The state of the system is completely specified by tbe T-vector X = It, XJT. From a Kalman prediction step or some other type of prior estimation. we assume Gaussian a priori density

is available for x. The prior is p.(X) = N(X;X..!:) where N(X;Y.a) denotes a normal distribution in X with mean Y and covariaoce matrix a We assume that the target positions

are a scanned by sensor [sic] that has uniform clutter with density p. The known detection probability P, ,; J is the same for all of the targets. For the valid detections. the sensor is Gaussian
with variaoce R. A scan of data then consists of the set Z = {l, l.J. The sensor provides no information about which of the 1,. are clutter and which are target-originated. The CMLE

consists of (I) computing the likelihood P(Z I X) and then 2) using conventional maximum likelihood estimation (MLE) (or maximum a posteriori estimation (MAP» to estimate X.

i. = arg max (1nPo(X) + InP(Z I X») (I)

x

...This inlegral can be approximalely evaluated using the saddle point method common throughout statistical physics and quantum field theory.. The dominant contribution to the inlegral given

by the stationary points ~. and " with respect to 71. and "...The inlegral is given by

p(zlx) = c' exp(E(fl..',.z-.x,»)

where c' is a oormalization constant that depeOOs on T Combining P(Z I Xi with the prior X yields the Ing-Iikelihood function to he minimized:

A = t(X-~)T1:-1(X-~) -E(1).,'r'Z.,x,)

To form dIe mean field coherent maximum likeli!.,..J position estimate (MFCMLE),we must simul~ly minimize A with respect to X, '1. , alk! " ,..

2.3.3 MFf and Detectloo. We oow present our approoch for extending dIe MFCMLE to attack dIe prOOlem of acoustic detection in theater ASW using dIe prOOlem of detecting l.(jimensional

r8Ddorn walkers against a clutter background as an example. Suppose that we have K scans of data Z', Z'. Each scan 2!' = {zf z".,'} has M(k) measurements in it wbere M(k)

is a random variable that depends on false alarm rate, dIe number of targets present and dleir detection probabilities. We oow denore dIe full data set Z = (Z' Z'). As in dIe tracking case

studied above, we assume that dIe detection probability P, for dIe targets and the false alarm density p are koown. To estimate dIe number of tracks, we compute P(Z I 7) wbere T is

the number of tracks. Tbe MLE estimate for T is dlen

t : arg ~P(Z 17'). (20)

In priocipal, Olx:e an estimate for T is ge~rated, the location of the tracks is an independent process. However, we will see that evaluation of P(Z 11) will involve saddle point evaluation

of an integral .00 that this saddle point will yield X. Note that for this K scan problem, X is now a T x K matrix with elements x,', the position of target t at time k. We defi~
X' = (xf x,,) to be the vector of target locatioos at time k (analogous to the system state vector in the tracking examples above) and 1(, = {x,' ,x,') to be the trajectory of a single target.

To compute P(Z 11). we use Bayes rule to decompose the probability in terms of the T-track state deosities PIX 11),

P(ZI T) = f dXP(ZIX)P(XI T). (21)

where dX -n.-l' n,-1T dx:. In Eq. (21) PIX I 7) represents our a priori koowledge about target behavior. Tbere are two salient features d1at cltaracterize Brownian walkers. First, they
ar;..e with unifonn density in the target region so d1at P(x/) = 1/L, t = 1,...,T. Second, if at time k the target ;.. at x: then the density for its l<x:ation at time k+l ;.. normal with mean

x: and variance Q, p(x:+l I x:) = N(x"+l;X:,Q). Th;.. exhausts our a priori koowledge of the walkers so we have PIX I 7) = PI,.[ (P(x/) PI,-,'.' p(x:+' I x,'». The Other factor in the

integrand of Eq. (21) ;.. P(Z I X) = PI,-,' P(Z' I X') wbere P(Z' I X') ;.. given by the integral Eqs. (13,15). Defining d{ = n..,' n,-1T d{,' and dr) = n,.,' n.-,".' dr).', we can combire

these factors to express P(Z I 7) as the integral

(22)

where E("..,~~l..,X,.) is given by Eq. (IS). Now, this integral can also he solved using saddle point methods. The detection algorithm then consisls of computing Eq. (22) for various values

of T aod using Eq. (20) to pick the best value of T. Observe that the saddle point evaluation then yields estimates for the tracks t One subtle issue that arises here is the evaluation of

the normalization l. For the tracking problem. we locate the stationary point of the integrand. However in this case. we must compare the value of the integral for different values of T

which entails at least approximate evaluation of l. l can be expressed in terms of the determinant of a matrix whose dimension is given by the total number of variables in the problem,

so some type of approximation scheme will probably be required. Also, oote that Eq. (22) must be evaluated for each possible value of T. An approach to this problem is to define a new

function using the approximation to the Kronecker 6-function of Eq. (8),

P('\"} = L P(ZI7')6('\"-7')

T

.

= Jim (21ta)-lI2 f dllC e-..'12a+I..TE e-i..Tp(ZI7')

a-- T-O
(23)

PIT) is oow a fuoction of a continuow variable. Many of the terms in the (22) can be combired and it is probably possible to evaluate the sum over T in (23) in closed form. This has the

advantage the it replaces separate integrals by a single one.

To evaluate P(Z I Xi we average over all possible assignments of the M measurements inthe scan Z tothe T tracks X Observe that P(Z I Xi is implicitly conditioned onthe number

of targets present T, but we suppress that for now. This will become important for the detection problem, however. [Using rnean-field methods we can write]
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k) is given by Eq. (15). Now, this integral can also be solved using saddle point methods. The detection algorithm then consists of computing Eq. (22) for various values 

of T and using Eq. (20) to pick the best value of T. Observe that the saddle point evaluation then yields estimates for the tracks X....One subtle issue that arises here is the evaluation of 
the normalization C. For the tracking problem, we locate the stationary point of the integrand. However in this case, we must compare the value of the integral for different values of T 
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